Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Atheroscler Thromb ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38616113

RESUMO

AIMS: LCZ696 (sacubitril/valsartan) exerts cardioprotective effects. Recent studies have suggested that it improves the endothelial function; however, the underlying mechanisms have not been thoroughly investigated. We investigated whether LCZ696 ameliorates diabetes-induced endothelial dysfunction. METHODS: Diabetes was induced using streptozotocin in 8-week-old male C57BL/6 mice. Diabetic mice were randomly assigned to receive LCZ696 (100 mg/kg/day), valsartan (50 mg/kg/day), or a vehicle for three weeks. The endothelium-dependent and endothelium-independent vascular responses of the aortic segments were determined based on the response to acetylcholine and sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVEC) and aortic segments obtained from C57BL/6 mice were used to perform in vitro and ex vivo experiments, respectively. RESULTS: LCZ696 and valsartan reduced the blood pressure in diabetic mice (P<0.05). The administration of LCZ696 (P<0.001) and valsartan (P<0.01) ameliorated endothelium-dependent vascular relaxation, but not endothelium-independent vascular relaxation, under diabetic conditions. LCZ696, but not valsartan, increased eNOSSer1177 (P=0.06) and Akt (P<0.05) phosphorylation in the aorta. In HUVEC, methylglyoxal (MGO), a major precursor of advanced glycation end products, decreased eNOSSer1177 phosphorylation (P<0.05) and increased eNOSThr495 phosphorylation (P<0.001). However, atrial natriuretic peptide (ANP) reversed these effects. ANP also ameliorated the MGO-induced impairment of endothelium-dependent vascular relaxation in the aortic segments (P<0.05), although L-NAME completely blocked this effect (P<0.001). CONCLUSION: LCZ696 ameliorated diabetes-induced endothelial dysfunction by increasing the bioavailability of ANP. Our findings suggest that LCZ696 has a vascular protective effect in a diabetic model and highlight that it may be more effective than valsartan.

2.
J Atheroscler Thromb ; 30(4): 326-334, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35732424

RESUMO

AIMS: Pharmacological blockade of mineralocorticoid receptors (MRs) is a potential therapeutic approach to reduce cardiovascular complications since MRs play a crucial role in cardiovascular regulation. Recent studies suggest that MR antagonists affect several extrarenal tissues, including vessel function. We investigated the effect of a novel nonsteroidal selective MR blocker, esaxerenone, on diabetes-induced vascular dysfunction. METHODS: Diabetes was induced by a single dose of streptozotocin in 8-week-old male C57BL/6 mice. Esaxerenone (3 mg/kg/day) or a vehicle was administered by gavage to diabetic mice for 3 weeks. Metabolic parameters, plasma aldosterone levels, and parameters related to renal function were measured. Endothelium-dependent or -independent vascular responses of the aortic segments were analyzed with acetylcholine or sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro study. RESULTS: Induction of diabetes elevated plasma aldosterone level (P<0.05) and impaired endothelium-dependent vascular relaxation (P<0.05). The administration of esaxerenone ameliorated the endothelial dysfunction (P<0.01) without the alteration of metabolic parameters, blood pressure, and renal function. Esaxerenone improved the eNOSSer1177 phosphorylation in the aorta obtained from diabetic mice (P<0.05) compared with that in the vehicle-treated group. Furthermore, a major MR agonist, aldosterone, decreased eNOSSer1177 phosphorylation and increased eNOSThr495 phosphorylation in HUVECs, which recovered with esaxerenone. Esaxerenone ameliorated the endothelium-dependent vascular relaxation caused by aldosterone in the aortic segments obtained from C57BL/6 mice (P<0.001). CONCLUSION: Esaxerenone attenuates the development of diabetes-induced endothelial dysfunction in mice. These results suggest that esaxerenone has potential vascular protective effects in individuals with diabetes.


Assuntos
Diabetes Mellitus Experimental , Receptores de Mineralocorticoides , Humanos , Masculino , Camundongos , Animais , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapêutico , Aldosterona/metabolismo , Aldosterona/farmacologia , Aldosterona/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...